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ABSTRACT

In the past, combat
simulations of corps and division level
operations required several days to model a
few days of combat. Driven by the speed,
size, and cost of the computers of that time,
it was infeasible, if not impossible, to
replicate the runs in a run design. Thus, the
investigation of that scale of combat used
deterministic models. Today, computer
technology offers performance
improvements of two to three orders of
magnitude, all packaged to fit on a corner of
a desk at less than a tenth of the cost of the
computers of ten years ago. We now have
the ability to consider making significantly
more runs of large combat simulations.

One reason to consider making
multiple runs of a deterministic model may
be the concept offered by Carl von
Clausewitz, who identified chance events as
explicit sources of general friction, which
can potentially turn success into failure and
vice versa. This paper presents a
deterministic method that produces multiple
runs for analysis of the non-monotonic
results of Clausewitzian war by varying the
initial states of information systems within
the model. The results of recent studies

serve as case studies to explore the utility of
this approach.

ISSUE

Why are multiple deterministic model
runs useful for some analyses?  Most
practitioners of military operations research
with deterministic model experience will
answer that at times, deterministic models
display non-monotonic tendencies.

The definition of non-monotonic, used
by Dewar et al (1996), is “adding more
capabilities to one side only does not lead to
as least as favorable combat outcome for
that side.” Because of this characteristic,
some analysts question the utility of
deterministic models to provide meaningful
results, especially whenever their results are
from a non-monotonic region of a solution
space. The U.S. Army Training and
Doctrine Command (TRADOC) Analysis
Center (TRAC), located at Fort
Leavenworth, Kansas, addresses this
potential non-monotonic issue through an
analytical method that allows multiple runs
of the deterministic Vector-In-Commander
(VIC) model.
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BACKGROUND

In the 1980’s and 1990’s, TRAC used
large (at the time), expensive, multi-user
computers to run large (meaning greater
than 250,000 lines of code) combat
simulations to conduct detailed corps and
division level analysis. It often took several
days of execution time to simulate several
days of combat. Accordingly, since it was
infeasible, if not impossible, to replicate the
runs of a run design, detailed corps and
division combat models tended to gravitate
to deterministic simulations.

The speed, size, and cost of the
computers of that time drove this condition.
An example of such a computer used in the
early 1980’s by TRAC to run VIC is the
VAX 780-5; rated at 1.3 million instructions
per second, it had 4 megabytes of memory
and 352 megabytes of disk space. The VAX
supported 15 to 20 people, cost about $1
million, and required 1 to 2 days to make a
run of VIC. Today, personal computers
(PCs) rated at 1 gigahertz with 500
megabytes of memory and 27 gigabytes of
disk space run VIC. VIC run times are now
less than 60 minutes. Each PC supports one
user and cost $5 thousand. Technology now
provides the capability to consider making
multiple runs of large combat simulations.

Another thing to be touched on, but is
not really a topic for this paper, is the eternal
debate about stochastic and deterministic
models. Although such a debate warrants
revisiting from time to time, this paper does
not discuss deterministic and stochastic pros
and cons nor recommend whether combat
simulations should be one or the other. This
is because deterministic combat models
exist now; they are in use today; and, since
High Level Architecture versions are under
development, they will be used in the future.
Thus, a method, such as described in this

paper, is needed to use deterministic models
for current and future combat analysis.

CONTEXT

The Prussian theorist, Carl von
Clausewitz offers one possible reason for
non-monotonic ~ behavior of combat
outcomes in his concept that identifies
chance events as an explicit source of
general friction. According to Watts (1996),
Clausewitz’s general friction can propel
small differences from what is expected or
predicted and can potentially turn success
into failure and vice versa. Clausewitz
wrote of war that no other human activity “is
so continuously or universally bound up
with chance.” Clausewitz attributes general
friction to three main factors: the
participation of human beings in war, the
distribution of information in war, and the
unpredictability (chance) of non-linear
processes in war.

Thus, good combat models should
display behavior consistent with
Clausewitz’s general friction, because they
contain numerous non-linear expressions,
and, in addition, they introduce non-linearity
(chance) through feedback by modeling the
flow of information across the battlespace
and by making combat decisions on their
perception of the state of the battle. Dewar
et al (1996) found, when studying
deterministic models, that “decisions based
on the state of the battle can be seen to cause
widespread non-monotonicities in the
outcomes of the models.”

In addition, since current emphasis on
the examination of information, information
systems, and information processes focuses
analysis on one of the major contributors to
general friction, chance should play an even
more prominent role in combat outcomes of
these information studies.
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THEORY

In their work with the simple
deterministic model detailed in Figure 1,
Dewar et al (1996) established that even
simple, attrition-based, deterministic models
produce non-monotonic results. Figure 2 is
a pictorial representation of these non-
monotonic results. The axes represent
starting Red troop strength (x-axis) and
starting Blue troop strength (y-axis). White
points of the graph represent Blue wins and
black points represent Red wins.

One can observe non-monotonicity
among the outcomes by selecting a constant
Blue starting troop strength, which is
represented by the red arrow. Red strength
increases to the right along the arrow.
Instead of a clearly defined Red strength

above which Red wins every time, non-
monotonic results in terms of reversal of
outcomes are evident in several places along
the arrow. These non-monotonic outcomes
are the result of decision points within the
simple deterministic model for the
introduction of Blue and Red
reinforcements. Each force introduces the
reinforcements, whenever their respective
force becomes reduced to a set troop
strength level or the force ratios became
unfavorable, as described in Figure 1.

Figure 2 clearly illustrates the concern
about deterministic models, when their
results fall in a non-monotonic portion of a
solution space. However, instead of a single
point estimate of the outcome as typically
done with deterministic models, making

Blue Red
Initial Troop Strength Variable Variable
Rn Bn
Combat Attrition Calculations Bni1 =Bp- - Rns1 = Ry - -
2048 512
Rn Rn
Reinforcement Thresholds | - >4 0rB,<.8By | -—-- <25 or Ri<.8Rg
Bn Bn
Reinforcement Block Size 300 300
Maximum Allowable Reinforcement Blocks 5 5
Reinforcement Delay (time steps) 70 70
Rn Rn
Withdrawal Thresholds | aeeee > 10 or Bp<.7Bg | = <15 0r Ri<.7Rp
Bn Bn

Figure 1. Simple deterministic model.
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1000
[ ] Blue Wins
Bl Red Wins
Initial
Blue
Troop
Strength
5

5 Initial Red Troop Strength 2850

Figure 2. Battle outcomes.

multiple runs can provide a more thorough
exploration of the solution space and will
allow analysis of the non-monotonic results.

ANALYTICAL METHOD

Multiple runs provide a better estimate
of the true population mean than a single
run. This is especially true, if the runs fall
within a non-monotonic portion of a solution
space, because multiple runs allow for a
more robust exploration of the solution
space to account for chance variability that
leads to the non-monotonic results. In
addition, multiple runs provide a procedure
to measure the variability of the results.

The set of criteria developed and
employed by TRAC to perturb the model is
presented in Figure 3. This perturbation
scheme anchors the analytical method that
enables multiple runs of the deterministic
VIC combat model. The key criterion is
affecting the many battlefield operating
systems throughout the run, not just at the
beginning.

Starting aerial sensors at random points
along their orbits serves as the basis for the
established perturbation scheme.
Heretofore, orbiting aerial sensors typically
started at one end of their orbit. This is a
rather arbitrary synchronization of aerial
sensors. It would be far more likely that
they would not all arrive at the initial
starting points of their orbits at the exact

e Must not directly affect the
output being measured

e Must be mathematically sound
e Must not alter any performance
data

e Must affect many battlefield
operating systems

¢ Must continuously perturb the
run — not just the initial conditions
e Should not require extensive
code changes, and should be
transparent to users who desire one
run

Figure 3. Perturbation criteria.
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instant of game initiation. Thus, having
them at random points along their orbits at
game initiation seems much more logical
and realistic.

This perturbation scheme provides
each run with a different set of detected
units and, accordingly, different targets to
engaged, and these differences continue
throughout the entire run. Thus, since
different targets are engaged and suffer
attrition, decisions are made sooner in some
runs, and later in other runs. Occasionally,
entirely different decisions are made. Tests
have demonstrated that this perturbation
scheme provides the desired results.
However, other perturbation schemes are
possible, perhaps even desirable, depending
on the specific study run design.

STATISTICAL BASIS

If the solution space (population) is the
set of all possible solutions (in this case,
combat outcomes), then each run is a sample
of that population. Since the starting points
of the aerial sensors are random positions on
their orbits, multiple runs, even from a
deterministic model, provide statistical
samples from the population of the solution
space.

The Central Limit Theorem (Devore
1982) states that, for a sufficiently large
number of samples from a population, the
samples will be approximately normally
distributed (about the mean), their average
mean will approximate the population mean,
and, as the number of samples increases, the
better the approximation. Therefore, the
Central Limit Theorem tells us that an
average of multiple runs typically is more
representative of the average outcome of the
entire population than a single run.

In addition, the Central Limit Theorem
does not require that the population be
normally distributed. If it is not, a
conservative rule of thumb is that the sample
size should be greater than or equal to 30.
However, the closer the population is to a
normal distribution, the fewer samples are
required to approximate the mean.

The actual number of samples required
can be determined wusing confidence
intervals (Walpole and Myers 1985). A
confidence interval to estimate the mean of
an approximately bell-shaped population,
when the true population variance is
unknown and it is impossible to obtain a
large sample size (greater than or equal to
30) is expressed as:

— S — ]
X'th_ <ﬂ<x+tw2__

Vo Vn

Where u is the population mean, X is the
sample mean, § is the sample standard
deviation, 1-o. is the degree of confidence, n
is the sample size, and t is the statistic for
the Student’s t-distribution.

If X is used as an estimate for u, we
can be (1-a0)100% confident that the error
will not exceed a specified amount €, when
the sample size is:

2
( )
n—
e

The method to determine the number of
samples required is accomplished through
an iterative application of this expression as
presented in Figure 4.
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e Chose an initial sample size,
collect the samples, and
compute the sample standard
deviation.

e Calculate the required sample
size using the expression
above.

e |If the required sample size is
greater than the number of
samples used, then additional
samples have to be made until
the required sample size is
reached, then the method is
repeated at the previous step.

o If, however, the required sample
size is less than or equal to the
sample size used to compute
the sample statistics, then the
sample size is sufficient.

Figure 4. Determining required sample size.

EXAMPLES

TRAC conducts a variety of studies,
including attrition studies, in which the
parameters being studied (e.g., weapon
systems, munitions, force structures) can
sometimes drive the results more than the
chance events. Other TRAC studies(e.g.,
information studies) investigate parameters
(e.g., Joint mission pass times, Joint mission
priorities, interoperability) that may not
drive the results more than the chance
events.

Two studies recently conducted by
TRAC will serve as case studies to examine
the utility of using multiple runs. The I*
Infantry Division Limited Conversion to
Division XXI Study will be the case study for
an attrition study. The US/UK Sensor-To-
Shooter Multinational C4 Interoperability
Study will be the case study for an
information study. Both of these studies
used the deterministic VIC combat

simulation, as the evaluation tool to measure
combat effectiveness.

In each of these studies, Red and Blue
losses were one of the main measures used
to examine combat effectiveness. It was
interesting to note that, in both these attrition
and information studies, Blue losses
displayed much more statistical variance
than did Red losses. The reason for this was
that Red losses were used as one of the
termination  criteria for the battle.
Accordingly, both of these examples focus
on Blue losses. Nonetheless, the method
described in Figure 4 should be applied to
each measure of merit used in the analysis to
determine the proper required sample size.

Figure 5 is a graph of the Blue losses for
the attrition study, which consisted of ten
runs each for a base case and three
alternatives. Each alternative added more
capability to the one before it, so one might
expect that the alternative should do no
worse than the previous alternative, and
perhaps should do better. Thus, using Blue
losses as the measure of merit, one would
anticipate that the Blue losses decrease as
we progressed through the alternatives. If
they did not decrease, they should not do

Attrition Study

—&—Base

—&—Alt1
Alt2

—>—Alt3

Blue Losses

1 2 3 4 5 6 7 8 9 10
Runs

Figure 5. Attrition study Blue losses.
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any worse, because we added more
capability.

Inspection of Figure 5 shows that the
Blue losses of the alternatives did indeed fall
along expectations. Blue losses were the
greatest in the base case; there were fewer
Blue lost in alternative 1 than in the base
case; there were fewer Blue lost in
alternative 2 than in alternative 1; the fewest
Blue losses were in alternative 3. Thus, the
ordering of the alternatives is consistent, but
one can still see Clausewitz’s general
friction at work, because there is some
question about the magnitude of the results.

Figure 6 is a graph of the sample mean
of the ten runs for each alternative. It
displays the trend that is intuitive in the line
plots of Figure 5. It is quite likely (except
perhaps for run 7) that analysis from one run
would yield findings consistent with
multiple runs. Thus, the Blue results of this
attrition study are reasonably well behaved
and monotonic.

Attrition Study

SBase
WAL

QA2
Qa3

Blue Losses

Figure 6. Mean attrition study Blue losses.

Figure 7 is a graph of the Blue losses for
the information study, which consisted of
ten runs each for a base case and two
alternatives. As before, each alternative
added more capability to the one before it,
so one might again expect that the
alternative should do no worse than the
previous alternative.  Again, using Blue

Biue Losses
c8888H

1 2 3 4 5 6 7 8 9 1
An

Figure 7. Information study Blue losses.

losses as the measure of merit, one would
anticipate that the Blue losses decrease as
we progressed through the alternatives. If
they do not decrease, they should not do any
worse, because we added more capability.

Inspection of Figure 7, however, shows
that these expectations are not evident.
Indeed, only three runs (4, 6, and 8) fall in
the expected order, where Blue lost the most
in the base case, less in alternative 1, and the
least in alternative 2. One run (5) falls in
inverse order meaning that Blue lost the
least in the base case, more in alternative 1,
and the most in alternative 2. Neither the
order nor the magnitude of the results for the
three alternatives is apparent from the chart.
One can definitely see Clausewitz’s general
friction at work.

Figure 8 is a graph of the sample mean
of the ten runs for each alternative. It
displays the trend in ordering of the results
that was expected, but not intuitive by
inspection of the results displayed in Figure
7. Using the mean results, it can be seen the
base case had the most Blue losses,
alternative 1 had fewer Blue losses, and
alternative 2 had the least Blue losses. The
ability to make multiple runs allowed a
meaningful analysis with a deterministic
model, even when the results were from a
non-monotonic region of the solution space.
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Information Study

Blue Losses

Figure 8. Mean information study Blue losses.

Although an initial sample size of 10
was used and it seemed to provide
meaningful results, a look at this sample size
and the confidence level calculations are in
order. The steps in Figure 4 were performed
for the information study and found that the
base case had the greatest variance and
accordingly required the largest sample size.
Figure 9 is a plot of the required sample
sizes for the information study base case,
where the confidence level 1-o and the error
shift in the mean e are parameterized.

Information Study
Base Case
Blue Losses

Number of Runs

0.05 0.1 0.15 0.2 0.25

Figure 9. Required sample size.

Inspection of Figure 9 shows that 10
runs correspond to an 80% confidence level
(green line) of detecting a 10% shift in the
mean. The figure also shows that 17 runs

corresponds to a 90% confident (blue line)
of detecting a 10% shift, and 25 runs
correspond to a 95% confidence (red line).
Similarly, Figure 9 also provides the number
of runs required for a smaller (5%) or larger
(15%, 20%, and 25%) shifts in the mean.
Again, one should perform this procedure on
every measure of merit used in the analysis
and the required number of runs will be the
largest computed for any of the measures.

THE WAY AHEAD

The TRAC studies presented at Figure
10 successfully employed this multiple runs
method using the deterministic VIC combat
model to analyze a variety of Army attrition
and information issues.

e The Joint Sensor-To-Shooter
Battle Management Study

e The 1% Infantry Division Limited
Conversion to Division XXI

o The US/UK Sensor-To-Shooter
Multinational C4 Interoperability
Study

e Comanche Analysis of
Alternatives

e Joint Contingency Force
Advanced Warfighting
Experiment Above Brigade
Analysis

e TRACER/FSCS Affordability
Review

Figure 10. Successful multiple run studies.

MAJ Ross W. Snare III is exploring the
mathematical foundation for this analytical
method in his doctorial dissertation entitled
An Alternative Method of Conducting
Analysis  with  Deterministic = Combat
Simulations.
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TRAC has adopted multiple runs of VIC
as a standard operating procedure for studies
whose results are in a non-monotonic region
of the solution space.

SUMMARY

Clausewitz’s concept of general
friction tells us that chance events in war can
turn success into failure and vice versa.
Good deterministic combat models, like
VIC, demonstrate that chance events can
drive their results, even to the extent of
chance reversal of outcomes (non-
monotonic behavior). This is not a problem
with these models that needs to be fixed; it
is a characteristic of modeling Clausewitzian
war. Since the distribution of information
around the battlefield is one of the main
causes of general friction, one should
expect, especially with the current and
anticipated future analytical emphasis on the
impact of information on combat operations,
an increase in the frequency of occurrences
when chance events influence combat
outcomes or, in other words, produce non-
monotonic results.

TRAC successfully employs multiple
runs of the deterministic VIC model to
analyze information studies and other
analyses, in which combat outcomes fall
into non-monotonic regions of their solution
spaces. The method employed at TRAC is
anchored solidly in the foundations of
mathematics and statistics. The key
enabling technology, however, for the
method is today’s computer technology,
which provides the speed and storage
required to make multiple runs of proven,
deterministic models.  Technology now
provides the means to handle the non-
monotonic combat outcomes of
Clausewitzian  war  using  detailed
deterministic division and corps levels
combat simulations.

ACRONYM LIST
C4 Command and control,
communications, and computers

FSCS Future Scout and Cavalry
System

PC Personal computer

TRAC TRADOC Analysis Center

TRACER Tactical Reconnaissance
Armored Combat Equipment
Requirement

TRADOC Training and Doctrine
Command

UK United Kingdom

UsS United States

VIC Vector-In-Commander
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